

ing Under
Rhapsody
Michael Pe

Rhapsody Graph

Imag

rce

1CS

Group Manager

Graphics Session Roadmap

* Rhapsody Graphics Overview
— Michael Peirce

* Using Graphics in the AppKit
— Jeff Martin

* Display PostScript
— Peter Graffagnino

* Interceptor
— Mike Paquette

*Q&A

The Graphics Architecture

Your Application

*NSColor.

CNSImage
*INSText,
*INSBETIET
*IN S BCrecn

What to Use When

* AppKit Graphics Classes
— Covers all the common graphics needs

— 90%+ of applications should use AppKit
graphics classes exclusively

What to Use When

* AppKit Graphics Classes
— Covers all the common graphics needs

— 90%+ of applications should use AppKit
graphics classes exclusively

“Display PostScript

Used by smaller percentage of applications
that need power of PostScript language

What to Use When

* AppKit Graphics Classes
— Covers all the common graphics needs

— 90%+ of applications should use AppKit
graphics classes exclusively

“ Display PostScript

Used by smaller percentage of applications
that need power of PostScript language

“ Interceptor
Very few applications need this

Available for access to display buffers and
low level pixel access

Graphics Session Roadmap

* Rhapsody Graphics Overview
— Michael Peirce

* Using Graphics in the AppKit
— Jeff Martin

* Display PostScript
— Peter Graffagnino

* Interceptor
— Mike Paquette

*Q&A

AppKit Graphics Classes

RO WL W L Cpa s TS g

*NSText
*NSBezier.

I RSEECNY | [ntercepior:
* EIC.

Window:

yerver:

AppKit Graphics Classes

* Object-oriented graphics model
* Fully functional
* Easily extensible through subclassing

* Portable
— Currently hosted on DPS
— Can be hosted on other graphics APIs

AppKit Core Graphic Classes

* Graphics state

— NSColor, NSFont, NS Transform,
NSDrawingStyle

*Vector Graphics
— NSBezierCurve

*Image Graphics
— NSImage

* Graphics Context Management
— NSGraphicsContext

NSColor

* Represents a specific color—possibly with
transparency information

*Is associated with a color space

— NSDeviceCMYKColorSpace or
NSDeviceRGBColorSpace for example

* Primary methods

— colorWithCalibratedRed:green:blue:alpha:
— set

NSFont

* Represents a font at a given point size
* Encapsulates font metric information

* Primary methods
— fontWithName:size:
— set

. NSTransform

* Represents an affine transform

— — i.e., a 3x2 transform which preserves
| parallel lines

* Primary methods
— translateXBy:andYBy:
— rotateByDegrees:
— concat
— set

NSDrawingStyle

* Represents line attributes
— lineWidth
— lineCap
— lineJoin

NSDrawingStyle

* Represents line attributes
— lineWidth
— lineCap
— lineJoin
“ Primary methods
setLineWidth:
setLineCap:
setLineJoin:
set

NSBezierPath

* Represents all vector graphics primitives

* Provides simple methods for drawing
lines, rects, glyphs, etc.

* Primary methods
— pathForRect:
— moveToPoint:
— lineToPoint:
— stroke
— fillRect
— strokeLineFromPoint:toPoint:

NSImage

* Represents all operations on images

- * Creates images from image data (PICT,
TIFF, GIF, JPEG, etc.)

* Provides bit blitting
(compositeloPoint:operation:)

* Provides imaging with arbitrary transform
(drawAtPoint:,drawInRect:)

NSGraphicsContext

* Controls graphic state operations
- * Flushing and synchronization
*Save and restore graphics state attributes

* Primary methods
— flush
— wait
— saveGraphicsState
— restoreGraphicsState

High Level Graphics Objects

* NSView
— — Hierarchies of coordinate systems
* NSText
— Used to draw and edit text
* NSWindow
— Represents windows and graphics devices
* NSScreen

— Represents physical video devices with
information about their size, locations,
depth, etc.

it

1CS

App
Graph
Demo

Graphics Session Roadmap

* Rhapsody Graphics Overview
— Michael Peirce

* Using Graphics in the AppKit
— Jeff Martin

* Display PostScript
— Peter Graffagnino

* Interceptor
— Mike Paquette

*Q&A

Display PostScript

*N5Color:
*NSlmage
* NS lext
* NS beziel
*INSHoreen
*HIC,

7 R A RS OR T Ti

lntercepior:

Apple’s Display
PostScript Window Server

* PostScript Imaging Model
* Extensions for alpha and compositing
* Every color has alpha when drawn

* Porter-Duff compositing supported as
generalized blit

— Similar to PhotoShop’s layers
* Three buffering modes for graphics
— Non-retained (client repaints)
— Retained (no client repaint, immediate)
— Buffered (no client repaint, buffered)

WindowServer

* Based on core PostScript Level 2 code
from Adobe

WindowServer

* Based on core PostScript Level 2 code
from Adobe

“ Client/Server (wire protocol is binary
encoded PostScript language)

WindowServer

* Based on core PostScript Level 2 code
from Adobe

“ Client/Server (wire protocol is binary
encoded PostScript language)

“ Apple-specific DPS operators for

WindowServer

* Based on core PostScript Level 2 code
from Adobe

“ Client/Server (wire protocol is binary
encoded PostScript language)

= Apple-specific DPS operators for
Compositing and Alpha

WindowServer

* Based on core PostScript Level 2 code
from Adobe

“ Client/Server (wire protocol is binary
encoded PostScript language)

= Apple-specific DPS operators for
Compositing and Alpha
Window Management

WindowServer

* Based on core PostScript Level 2 code
from Adobe

“ Client/Server (wire protocol is binary
encoded PostScript language)
= Apple-specific DPS operators for
Compositing and Alpha
Window Management
Input Management

WindowServer

* Based on core PostScript Level 2 code
from Adobe

“ Client/Server (wire protocol is binary
encoded PostScript language)
* Apple-specific DPS operators for
Compositing and Alpha
Window Management
Input Management

“Window and Input Management operators
not part of the “public” AP, use
AppKit objects

Apple Enhancements to DPS

* Consistent DeviceRGB interpretation
across displays

* Gamma corrected and optimized
dithering

* Common case imaging optimizations
(identity and scale)

* Leverage Mach for efficient IPC
* Improved CMYK to RGB conversion

Apple Enhancements to DPS

; *Improved color rendering performance
- * Integer font metrics

*Lazy depth promotion

* Backing store compression

Future Enhancements to DPS

* Update to PostScript 3

* Update system font collection

* Integration with ColorSync

* Improved support for Truelype fonts
* Anti-aliasing of text and graphics

S
3

DPS Performance

* PPC version is more than 2006 times faster
than Laserwriter II/NT X PostScript

* Apple has heavily optimized “real world”
usage of DPS

— Special case, tuned code for common
imaging and marking operations

— Buffered windows minimize app redraws

— Sophisticated backing store management
minimizes memory cost

DPS Performance (cont.)

* Conventional acceleration available for
window move and screen fills

DPS Performance (cont.)

* Conventional acceleration available for
window move and screen fills

“Most drawing occurs to backing buffers,
so0 conventional acceleration is trickier

DPS Performance (cont.)

* Conventional acceleration available for
window move and screen fills

“Most drawing occurs to backing buffers,
so0 conventional acceleration is trickier

Researching migrating active backing
stores to off screen VRAM (if available)

DPS Performance (cont.)

* Conventional acceleration available for
window move and screen fills

“Most drawing occurs to backing buffers,
so conventional acceleration is trickier

Researching migrating active backing
stores to off screen VRAM (if available)

“Can run “device layer” of DPS in a
separate thread on SMP machines

DPS Performance (cont.)

* Conventional acceleration available for
window move and screen fills

“Most drawing occurs to backing buffers,
so conventional acceleration is trickier

Researching migrating active backing
stores to off screen VRAM (if available)

“Can run “device layer” of DPS in a
separate thread on SMP machines

“ Device layer can take advantage of MMX
style instructions and fast/wide memory

Advantages of Apple’s DPS

* PostScript is great news for publishing
applications!

Advantages of Apple’s DPS

* PostScript is great news for publishing
applications!

EPS is everywhere

Advantages of Apple’s DPS

* PostScript is great news for publishing
applications!

EPS is everywhere

“ Basic architecture has been shipping for
8+ years (as NeXT)

Advantages of Apple’s DPS

* PostScript is great news for publishing
applications!

EPS is everywhere

“ Basic architecture has been shipping for
8+ years (as NeXT)

“ Improvements (Level 2, color, etc.) can be
made without breaking applications

Advantages of Apple’s DPS

* PostScript is great news for publishing
applications!
EPS is everywhere

“ Basic architecture has been shipping for
8+ years (as NeXT)

“ Improvements (Level 2, color, etc.) can be
made without breaking applications

* Ubiquitous bufferin(?
(clients not involved in damage repair)

Advantages of Apple’s DPS

* PostScript is great news for publishing
applications!
EPS is everywhere

“ Basic architecture has been shipping for
8+ years (as NeXT)

“ Improvements (Level 2, color, etc.) can be
made without breaking applications

“ Ubiquitous bufferin

(clients not involvetf in damage repair)
“Multi-depth backing store

(color only paid for when used)

Advantages of Apple’s DPS

* Compositing + Alpha =
* Depth independent blitting
* Client/Server model allows remote display

* Truly framebuffer independent

— Very hard to write an application that
doesn’t run optimally on all displays

Graphics Session Roadmap

* Rhapsody Graphics Overview
— Michael Peirce

* Using Graphics in the AppKit
— Jeff Martin

* Display PostScript
— Peter Graffagnino

* Interceptor
— Mike Paquette

*Q&A

Interceptor

N S N A DR L T S TR

C

—

Your Application QuickTime

P JD 51
*NSColor i

*NSImage | —
*INSlext

* NSbezier.

Aladerzzn Interceptor:
* EIC,

Window:

yerver:

What is Interceptor?

*Mechanism to directly access
display memory

* Works with Window Server to
maintain geometry

*Speeds incremental display updating

* Supports specialized hardware
(DMA, Acceleration)

* Fully supported, public API

Interceptor Features

*Memory mapping

— For framebuffers which are linearly
mappable, the interceptor package can be
used to map the framebuffer memory
directly into the client process

* Clipping notification

— For a given area of interest, the interceptor
package can synchronously notify the
client of changes in window visibility

More Interceptor Features

* Movement notification

— Window movement events can be
synchronously handled by the client

* Direct compositing
— Client can composite data directly into
awindow

— Allows the client to exploit the Window
Server’s clipping logic to draw a bitmap
directly into a clipped window

Interceptor Architecture

*Window Server manages window
geometry and visibility

* Changes in visibility are synchronously
sent to a proxy thread in the
Interceptor client

*The proxy thread waits until the client
is not drawing, then updates the
geometry information

* Orchestrated to prevent client from
“coloring outside the lines”

Interceptor Architecture

N S R A R O S

~ Your Applicati

Framebufier

High Level Interceptor Classes

* NSSimpleBitmap

— — Abstract superclass for NSDirectBitmap
and NSDirectScreen

* NSDirectBitmap

— Drawing surface for a rectangle in a
window

* NSDirectScreen
— Drawing surface for a physical framebuffer

Low Level Interceptor Classes

* NSShape
o — Represents visible and obscured regions
* NSDirectPalette

— Represents palettes for 8-bit
indexed displays

Interceptor Do’s

, *Blue Box uses it
W *Alternate drawing mechanisms
| — QuickTime Movies
— QuickDraw 3D
* Full screen games
*Screen savers

* Live video display

Interceptor Don’ts

* Usually not the best way to blit to screen
— Not hardware independent
— Check out NSImage classes in AppKit

Interceptor Demos

* QuickDraw 3D and QuickTime

— These use NSDirectBitmap to draw into
awindow

— They are examples of giving an alternate
drawing mechanism direct access to the
display within a window

Q&A

* Engineering

— Peter Graffagnino, Michael Peirce,
Mike Paquette, Jeff Martin,
Andrew Barnes, Eric Schlegel

*Marketing

— Carla Ow-Chu
* Evangelism

— Ken Bereskin

